Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
J Virol Methods ; 314: 114678, 2023 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2181191

RESUMEN

High-resolution melting (HRM) analysis is a PCR-based method that can be used as a screening assay to identify SARS-CoV-2 variants. However, conventional HRM assays hardly detect slight melting temperature differences at the A-T to T-A transversion. As the N501Y substitution results from A-T to T-A transversion in A23063, few or no studies have shown that a conventional HRM assay can identify N501Y variants. This study successfully developed an HRM assay for identifying the N501Y mutation. Two HRM assays were used in the N501 site because the discrimination results were affected by the virus copy numbers. One is a conventional HRM assay (detectable at 103-106 copies/mL) and the other is a modified HRM assay by adding the wild-type fragment (detectable at 105-1010 copies/mL). Using viral RNAs from cultured variants (Alpha, Beta, and Gamma), a modified HRM assay correctly identified three N501Y variants because of high-copy-number RNAs in those viral samples. The sensitivity and specificity of the N501Y assay were 93.3% and 100%, respectively, based on 209 clinical samples (105 for N501; 104 for N501Y). These results suggest that our HRM-based assay is a powerful tool for rapidly identifying various SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Reacción en Cadena de la Polimerasa/métodos , Temperatura , Mutación
2.
Viruses ; 14(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: covidwho-2090369

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant BA.5 emerged as of February 2022 and replaced the earlier Omicron subvariants BA.1 and BA.2. COVID-19 genomic surveillance should be continued as new variants seem to subsequently appear, including post-BA.5 subvariants. A rapid assay is needed to differentiate between the currently dominant BA.5 variant and other variants. This study successfully developed a high-resolution melting (HRM)-based assay for BA.4/5-characteristic spike mutation F486V detection and demonstrated that our assay could discriminate between BA.1, BA.2, and BA.5 subvariants in clinical specimens. The mutational spectra at two regions (G446/L452 and F486) for the variant-selective HRM analysis was the focus of our assay. The mutational spectra used as the basis to identify each Omicron subvariant were as follows: BA.1 (G446S/L452/F486), BA.2 (G446/L452/F486), and BA.4/5 (G446/L452R/F486V). Upon mutation-coding RNA fragment analysis, the wild-type fragments melting curves were distinct from those of the mutant fragments. Based on the analysis of 120 clinical samples (40 each of subvariants BA.1, BA.2, and BA.5), this method's sensitivity and specificity were determined to be more than 95% and 100%, respectively. These results clearly demonstrate that this HRM-based assay is a simple screening method for monitoring Omicron subvariant evolution.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sensibilidad y Especificidad , Bioensayo , Mutación , Glicoproteína de la Espiga del Coronavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA